Molecular mechanisms of toxic effects of fotemustine in rat hepatocytes and subcellular rat liver fractions.
نویسندگان
چکیده
Fotemustine is a clinically used DNA-alkylating 2-chloro-ethyl-substituted N-nitrosourea, which sometimes shows signs of haematotoxicity and reversible liver and renal toxicity as toxic side-effects. Mechanistic data on these side-effects are scarce and incomplete. In this study, firstly the cytotoxicity of fotemustine in freshly isolated rat hepatocytes was investigated and secondly the metabolism of fotemustine and possible mechanisms involved in the observed cytotoxicity. Fotemustine caused concentration- and time-dependent cytotoxic effects in rat hepatocytes. Extensive GSH-depletion and formation of GSSG were first observed, followed by lipid peroxidation and finally by cell death measured as LDH-leakage. 2-Chloroethyl analogues of fotemustine, which in contrast to fotemustine have no carbamoylating potency, were not toxic to rat hepatocytes. The data suggest that the cytotoxicity of fotemustine is resulting from its reactive decomposition product, DEP-isocyanate. GSH-conjugation of DEP-isocyanate was shown to protect against the cytotoxicity of fotemustine, however, only temporary and not completely. Synthetical DEP-SG, the GSH-conjugate of DEP-isocyanate, was also toxic to rat hepatocytes, albeit to a significantly lesser extent than fotemustine. In rat liver microsomes, no fotemustine-induced LPO was observed, suggesting that reactive decomposition products of fotemustine do not directly cause peroxidation of cellular membranes. Fotemustine did not affect the antioxidant enzymes superoxide dismutase, catalase, GSH-peroxidase, GSSG-reductase and GSH S-transferases. Thus, direct effects on these antioxidant enzymes are not likely to explain the cytotoxic effects of fotemustine in hepatocytes. In conclusion, it is proposed that the cytotoxicity of fotemustine in rat hepatocytes is caused by rapid and extensive depletion of GSH by DEP-isocyanate, a reactive decomposition product of fotemustine, consequently hampering the endogenous protection against its own toxicity. Knowledge of molecular mechanisms of the cytotoxicity of fotemustine may contribute to a more rational design of selective protection against toxic side-effects which occur upon therapy of patients with fotemustine.
منابع مشابه
Ichthyotoxic Cochlodinium polykrikoides Induces Mitochondrial Mediated Oxidative Stress and Apoptosis in Rat Liver Hepatocytes
In this research, we investigated the cytotoxic mechanisms of Cochlodinium polykrikoidescell lysate on isolated rat liver hepatocytes.This micro algae is responsible for a severe and widespread harmful algal bloom in the Persian Gulf and Gulf of Oman (2008-2009). Isolated hepatocytes were obtained by collagenase perfusion of Sprague-Dawley rat liver.According to our results, incubation of algal...
متن کاملIchthyotoxic Cochlodinium polykrikoides Induces Mitochondrial Mediated Oxidative Stress and Apoptosis in Rat Liver Hepatocytes
In this research, we investigated the cytotoxic mechanisms of Cochlodinium polykrikoidescell lysate on isolated rat liver hepatocytes.This micro algae is responsible for a severe and widespread harmful algal bloom in the Persian Gulf and Gulf of Oman (2008-2009). Isolated hepatocytes were obtained by collagenase perfusion of Sprague-Dawley rat liver.According to our results, incubation of algal...
متن کاملCytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملCrocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection
Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...
متن کاملCrocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection
Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 17 4 شماره
صفحات -
تاریخ انتشار 1996